A cone penetration test database for multiple thin-layer correction procedure development

Author:

Yost Kaleigh M1ORCID,Yerro Alba1,Martin Eileen R2,Green Russell A1

Affiliation:

1. Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA

2. Department of Geophysics and Applied Math and Statistics, Colorado School of Mines, Golden, CO, USA

Abstract

Cone penetration tests (CPTs) are a commonly used in situ method to characterize soil. The recorded data are used for various applications, including earthquake-induced liquefaction evaluation. However, data recorded at a given depth in a CPT sounding are influenced by the properties of all the soil that falls within the zone of influence around the cone tip rather than only the soil at that particular depth. This causes data to be blurred or averaged in layered zones, a phenomenon referred to as multiple thin-layer effects. Multiple thin-layer effects can result in the inaccurate characterization of the thickness and stiffness of thin, interbedded layers. Correction procedures have been proposed to adjust CPT tip resistance for multiple thin-layer effects, but many procedures become less effective as layer thickness decreases. To compare or improve these procedures and to develop new ones, it is critical to have pairs of measured tip resistance ( q m) and true tip resistance ( q t) data, where q m is the tip resistance recorded by the CPT in a layered profile, and q t represents the tip resistance that would be measured in the profile absent of multiple thin-layer effects. Unfortunately, data sets containing q m and q t pairs are extremely rare. Accordingly, this article presents a unique database containing laboratory and numerically generated CPT data from 49 highly interlayered soil profiles. Both q m and q t are provided for each profile. An accompanying Jupyter notebook is provided to facilitate the use of the data and prepare them for future statistical learning (or other) applications to support multiple thin-layer correction procedure development.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

SAGE Publications

Reference43 articles.

1. Thin-layer effects on the CPT qc measurement

2. Anura3D (2021) Anura3D MPM Research Community. Available at: http://www.anura3d.com/ (accessed 3 May 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3