A Bayesian unsupervised learning approach for identifying soil stratification using cone penetration data

Author:

Wang Hui1,Wang Xiangrong1,Wellmann J. Florian2,Liang Robert Y.1

Affiliation:

1. Department of Civil and Environmental Engineering and Engineering Mechanics, The University of Dayton, Dayton, OH 45469-0243, USA.

2. The Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen 52062, Germany.

Abstract

This paper presents a novel perspective to understanding the spatial and statistical patterns of a cone penetration dataset and identifying soil stratification using these patterns. Both local consistency in physical space (i.e., along depth) and statistical similarity in feature space (i.e., logQt–logFrspace, where Qtis the normalized tip resistance and Fris the normalized friction ratio, or the Robertson chart) between data points are considered simultaneously. The proposed approach, in essence, consists of two parts: (i) a pattern detection approach using the Bayesian inferential framework and (ii) a pattern interpretation protocol using the Robertson chart. The first part is the mathematical core of the proposed approach, which infers both spatial pattern in physical space and statistical pattern in feature space from the input dataset; the second part converts the abstract patterns into intuitive spatial configurations of multiple soil layers having different soil behavior types. The advantages of the proposed approach include probabilistic soil classification and identification of soil stratification in an automatic and fully unsupervised manner. The proposed approach has been implemented in MATLAB R2015b and Python 3.6, and tested using various datasets including both synthetic and real-world cone penetration test soundings. The results show that the proposed approach can accurately and automatically detect soil layers with quantified uncertainty and reasonable computational cost.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3