Metamorphic InGaAs/InAsPSb Quantum Well Light Emitting Diodes for Operation in the Short‐Wave Infrared Region

Author:

Park Suho12ORCID,Nguyen Phuc Dinh13,Kim Yeongho4,Jeon Jiyeon1,McCartney Martha R.5,Smith David J.5,Kim Minkyeong6,Kim Dongwan1,Chun Byong Sun1,Lee Sang Jun13

Affiliation:

1. Division of Interdisciplinary Materials Measurement Institute Korea Research Institute of Standards and Science Daejeon 34113 Republic of Korea

2. Department of Electrical and Computer Engineering University of Delaware Newark DE 19716 USA

3. Department of Nano Convergence Measurement University of Science & Technology Daejeon 34113 Republic of Korea

4. School of Materials Science and Engineering Chonnam National University Gwangju 61186 Republic of Korea

5. Department of Physics Arizona State University Tempe AZ 85287 USA

6. R&D Center IRSpectra Co., LTD Daejeon 34113 Republic of Korea

Abstract

AbstractSolid‐state infrared sources designed to emit wavelengths above 2 µm often face challenges in achieving high emission efficiency, minimizing power consumption, and reducing fabrication costs. In response, a 2.4 µm wavelength light emitting diode (LED) is developed using metamorphic In0.83Ga0.17As/InAs0.3P0.65Sb0.05 multiple quantum well (MQW) heterostructures. The substantial conduction (94 meV) and valence band offsets (300 meV) within this type‐I MQW LED architecture result in strong carrier confinement, improving electron and hole wavefunction overlap. Despite a notable lattice mismatch of 2.0% between the MQWs and InP substrate, the resulting LED wafer exhibits exceptionally low surface roughness (1.1 nm) and well‐defined, sharp interfaces within the heterostructures. Furthermore, this MQW LED exhibits favorable emission properties, including a low turn‐on field, minimal efficiency droop, and stable emission wavelength across varying injection currents. These advancements underscore the potential of such short‐wave infrared emitters for scalable applications in fields such as inspection, optical on‐chip communication, and biomedical diagnostics.

Funder

Chonnam National University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3