Smart Design of Fermi Level Pinning in HfO2‐Based Ferroelectric Memories

Author:

Baumgarten Lutz1ORCID,Szyjka Thomas12ORCID,Mittmann Terence3ORCID,Gloskovskii Andrei4ORCID,Schlueter Christoph4ORCID,Mikolajick Thomas35ORCID,Schroeder Uwe3ORCID,Müller Martina2ORCID

Affiliation:

1. Forschungszentrum Jülich GmbH Peter Grünberg Institut (PGI‐6) 52425 Jülich Germany

2. Fachbereich Physik Universität Konstanz 78457 Konstanz Germany

3. NaMLab gGmbH Noethnitzer Str. 64a 01187 Dresden Germany

4. Deutsches Elektronen‐Synchrotron Notkestraße 85 22607 Hamburg Germany

5. TU Dresden 01062 Dresden Germany

Abstract

AbstractHow and why the reliability of ferroelectric HfO2‐ and HZO (Hf0.5Zr0.5O2)‐based memory devices strongly depends on the choice of electrode materials is currently under intense discussion. Interface conditions such as band alignment, defect formation, and doping are recognized as decisive and interrelated parameters, but a unified picture of the physical mechanisms is still missing. Here, two opposite scenarios of band alignment are found in TiN/HZO/TiN and IrO2/HZO/IrO2 using hard X‐ray photoelectron spectroscopy, revealing on the one hand the conditions for a stable device performance, and the origin of their degradation on the other. As a key difference, TiN electrodes scavenge oxygen from the HZO, while IrO2 electrodes supply it. Considering the electronic doping limit of HfO2, a key condition for the stability of ferroelectric devices can be identified: The alignment of the charge neutrality levelwith respect to the metallic Fermi level, which is pinned by the doping limit. Stable device performance can only be achieved for oxygen‐deficient HfO2‐based interfaces, where the Fermi level of the metal electrode is close to the conduction band of the ferroelectric insulator. This empirical model explains the fatigue behavior of HfO2‐based capacitors using either oxygen‐scavenging TiN or oxygen‐supplying IrO2 electrodes.

Funder

H2020 Industrial Leadership

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3