Joint‐Inspired Liquid and Thermal Conductive Interface for Designing Thermal Interface Materials with High Solid Filling yet Excellent Thixotropy

Author:

Xie Zilong1,Dou Zhengli1,Wu Die1,Zeng Xiangtong1,Feng Yuan1,Tian Yunfei2,Fu Qiang1,Wu Kai1ORCID

Affiliation:

1. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China

2. Analytical & Testing Center Sichuan University Chengdu 610065 China

Abstract

AbstractFor advanced thermal interface materials (TIMs), massive inorganic addition for high isotropic thermal conductivities conflicts with suitable rheological viscosity for low contact thermal resistance. Traditional strategies rarely resolve such a contradiction, and it remains an academic and industrial challenge. Herein, inspired by the structure and function of the bone joint, a best‐of‐both‐worlds approach is reported that endows a standard polydimethylsiloxane/alumina (PDMS/Al2O3) TIM with simultaneously enhanced rheological mobility and thermal conductivity. It is conducted by employing morphology‐controllable gallium‐based liquid metal (LM) to the surface of Al2O3 by a scalable mechanochemical process. At the typical polymer‐LM‐Al2O3 interface, LM droplets with low cohesive energy can release the freedom for macromolecular chain relaxation and reduce the viscosity, successfully allowing the high‐loading TIMs (79 vol.%) to keep the thixotropic state and effectively reducing its contact thermal resistance with a copper substrate by 65%. At the same time, adjacent LMs merge to thermally bridge separate Al2O3 particles, which facilitates the interfacial thermal conduction and enhances the thermal conductivity from 5.9 to 6.7 W m−1 K−1. Along with additional electrical insulation, this filler modification strategy is believed to inspire others to develop high‐performance polymer‐based TIMs for future advanced electronics.

Funder

National Natural Science Foundation of China

State Key Laboratory of Polymer Materials Engineering

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3