Graphene‐Enhanced Metal Transfer Printing for Strong van der Waals Contacts between 3D Metals and 2D Semiconductors

Author:

Qi Dianyu1,Li Peng12,Ou Haohui1,Wu Di1,Lian Weiguang1,Wang Zhuo1,Ouyang Fangping3,Chai Yang4,Zhang Wenjing1ORCID

Affiliation:

1. International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China

2. Shenzhen Institute of Advanced Electronic Materials Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518103 P. R. China

3. School of Physics and Electronics Central South University Changsha 410083 P. R. China

4. Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong 999077 P. R. China

Abstract

Abstract2D semiconductors have shown great potentials for ultra‐short channel field‐effect transistors (FETs) in next‐generation electronics. However, because of intractable surface states and interface barriers, it is challenging to realize high‐quality contacts with low contact resistances for both p‐ and n‐ 2D FETs. Here, a graphene‐enhanced van der Waals (vdWs) integration approach is demonstrated, which is a multi‐scale (nanometer to centimeter scale) and reliable (≈100% yield) metal transfer strategy applicable to various metals and 2D semiconductors. Scanning transmission electron microscopy imaging shows that 2D/2D/3D semiconductor/graphene/metal interfaces are atomically flat, ultraclean, and defect‐free. First principles calculations indicate that the sandwiched graphene monolayer can eliminate gap states induced by 3D metals in 2D semiconductors. Through this approach, Schottky barrier‐free contacts are realized on both p‐ and n‐type 2D FETs, achieving p‐type MoTe2, p‐type black phosphorus and n‐type MoS2 FETs with on‐state current densities of 404, 1520, and 761 µA µm−1, respectively, which are among the highest values reported in literature.

Funder

Shenzhen Peacock Plan

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3