Constructing of n‐Type Semiconductor Heterostructures for Efficient Hydrazine‐Assisted Hydrogen Production

Author:

Zhou Min12,Yu Zhiqiang2,Yu Guo1,Fu Rong1,Wang Shuocheng1,Yang Wei2,Liao Xiaobin2,Zhao Yan234ORCID,Wang Zhaoyang15ORCID

Affiliation:

1. School of Chemistry and Materials Science Hubei Engineering University No. 272 Traffic Avenue Xiaogan Hubei 432000 P. R. China

2. State Key Laboratory of Silicate Materials for Architectures International School of Materials Science and Engineering Wuhan University of Technology Wuhan Hubei 430070 P. R. China

3. The Institute of Technological Sciences Wuhan University Wuhan Hubei 430072 P. R. China

4. College of Materials Science and Engineering Sichuan University Chengdu Sichuan 610065 P. R. China

5. Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan Hubei 430062 P. R. China

Abstract

AbstractHydrazine‐assisted water electrolysis presents a promising approach toward energy‐efficient hydrogen production. However, the progress of this technology is hindered by the limited availability of affordable, efficient, and durable catalysts. In this study, a feasible strategy is proposed for interface modulation that enables efficient hydrogen evolution and hydrazine oxidation through the construction of n‐type semiconductor heterostructures. The metal–semiconductor contacts are rationally designed using ruthenium nanoclusters and a range of metal oxide (M–O) semiconductor heterostructures, including p‐type semiconductor substrates (NiO, Co3O4, NiCo2O4, CuCo2O4, ZnCo2O4) and n‐type semiconductor substrate (Fe2O3). Intriguingly, Ru nanoclusters supported on p‐type M–O substrates induce a transition from p‐type M–O to n‐type M‐O/Ru. The design of n‐type semiconductor heterostructures can significantly reduce space‐charge regions and increase charge carrier concentration, thereby improving the electrical conductivity of electrocatalysts. Moreover, Ru atoms can serve as highly efficient active sites for hydrogen evolution reaction and hydrazine oxidation reaction. The NiO/Ru heterostructure can drive current densities of 10 and 100 mA cm−2 with only 0.021 and 0.22 V cell voltages for hydrazine‐assisted water electrolysis. This work provides new insights for the development of highly efficient semiconductor catalysts, enabling energy‐saving hydrogen production.

Funder

National Natural Science Foundation of China

National College Students Innovation and Entrepreneurship Training Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3