Ultra‐Strong and Transparent Biomimetic Nanocomposite through Orientation Effects and In Situ Biomineralization

Author:

Zhao Xuan1,Chen Zehong1,Zhuo Hao2,Zhong Chunyan3,Shi Ge1,Liu Tanglong1,Huang Xiaofang1,Zhong Linxin1ORCID,Peng Xinwen1

Affiliation:

1. State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510641 China

2. Department of Mechanical Engineering National University of Singapore 3 Engineering Drive 2 Singapore 117576 Singapore

3. Hainan Yeguo Foods Co. Ltd. Haikou 570311 China

Abstract

AbstractThe fascinating mechanical property of biomaterials in nature to support living organisms largely relies on their hierarchical and ordered structures. However, for the current biomimetic materials, their organic–inorganic heterostructures typically exhibit poor uniformity, weak interfacial bonding, and various defects, limiting the breakthrough in strength and toughness. Herein, an ultra‐strong and transparent biomimetic nanocomposite is presented by combining orientation effects and in situ biomineralization to precisely engineer each level of the hierarchy. The orientation of nanofiber provides long‐range and order matrix to remarkably eliminate defects, promote multi‐scale interfacial bonding and increase the crystalline degree and size of organic matrix; while the in situ mineralization of amorphous inorganic oligomers firmly welds the organic–inorganic interface together to form a continuous and homogeneous monolithic structure. Due to the unique structural features, the nanocomposite exhibits a tensile strength of up to 1168.1 ± 10.2 MPa and a toughness of 34.1 ± 0.8 MJ m−3. Furthermore, the nanocomposite film is imparted with high transparence and anisotropic optical properties. This work is expected to provide insights into the design of high‐performance biomineralized materials from structural coupling to precisely controlling interfaces and microstructure.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3