Exploring the potential of CuO nanoneedles and CNT/PVC nanocomposites in medium voltage cable technology

Author:

Elbasiony A. M.12,Alkhursani Sheikha A.3,Ghobashy Mohamed Mohamady4ORCID,Madani Mohamed3,Al-Gahtany Samera Ali5,Sharshir A. I.6ORCID

Affiliation:

1. Department of chemistry, College of Science, Northern Border University (NBU), Arar, Saudi Arabia

2. Physical Chemistry Department, Electrochemistry and Corrosion Laboratory, National Research Centre, Giza, Egypt

3. College of Science and Humanities- Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia

4. Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt

5. Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia

6. Solid State and Electronic Aclcelerators Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt

Abstract

This study focuses on the development of CuO nanoneedle and multi wall carbon nanotube (CNT) reinforced poly (vinyl chloride) (PVC) nanocomposites for medium voltage cable applications. CuO nanoneedles were synthesized using a pulsed wire evaporation technique and integrated with CNTs to create CuO/CNT nanocomposites. The nanocomposites were then used to reinforce PVC films through a solution casting method. Microstructural characterization confirmed the uniform dispersion of CuO nanoneedles and CNTs concentrations (0–0.4 wt%) within the PVC matrix. Microstructural characterization by XRD, SEM, and TEM confirmed the formation of CuO nanoneedles (diameter ∼4 nm, length 200–250 nm) and their uniform dispersion within the PVC matrix along with CNTs. Optical studies revealed reduced optical bandgap and Urbach tail width in PVC/CuO/CNT nanocomposites compared to neat PVC/CuO. Electrical characterization showed significantly improved AC conductivity (up to eight orders of magnitude) with increasing CNT loading, attributed to the formation of efficient charge transport networks. Dielectric studies revealed concurrent improvements in dielectric permittivity and losses with CNT addition. Simulations demonstrated a more uniform electric field distribution in PVC/CuO/CNT nanocomposites, mitigating hotspots. The synergetic effects of CuO nanoneedles and CNTs led to excellent improvements in the electric properties of PVC, underscoring their potential in medium voltage cable applications.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3