Biomimetic Stiff Nanocomposite for High‐Strength Structural Material

Author:

Liu Tanglong1,Zhao Xuan1,Zhong Linxin1ORCID,Zhuo Hao2,He Yingzi1,Zhang Yuping1,Peng Xinwen1

Affiliation:

1. State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510641 China

2. Department of Mechanical Engineering National University of Singapore 3 Engineering Drive 2 Singapore 117576 Singapore

Abstract

AbstractThe honeycomb structure stands out as an exemplary material, characterized by its remarkable combination of lightweight and superior mechanical strength. Drawing inspiration from the roles of cellulose nanofiber and lignin in natural wood, a novel high‐stiffness biomass honeycomb nanocomposite is developed. This composite is engineered by incorporating lignin into bacterial cellulose, followed by the self‐polycondensation of lignin at elevated temperature. The nanocomposite architecture features intricately interwoven nanofibers to provide a robust long‐range framework, while the self‐polymerized lignin through coniferyl alcohol radicals serves as a rigid binder that interlinks the nanofibers. The dual mechanisms endow the material with exceptional tensile strength and rigidity. Molding this nanocomposite into a honeycomb structure yields a material with outstanding mechanical properties that outperform commercial alternatives, including those derived from Nomex paper and aluminum alloys. Given its characteristics, this nanocomposite holds great promise as a substrate for the next generation of high‐performance structural materials.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Progress of Functional Solvent-free Nanofluids: A Review;ACS Applied Materials & Interfaces;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3