Liquid Metal‐Enhanced Highly Adhesive Electrodes for Multifunctional Epidermal Bioelectronics

Author:

Cao Chunyan1ORCID,Hou Changshun1,Wang Xiong1,Lv Dong1,Ai Liqing1,Feng Yaxiu1,Chen Peiran1,Wang Xuejiao1,He Mingliang1,Yao Xi12ORCID

Affiliation:

1. Department of Biomedical Sciences City University of Hong Kong Kowloon, Hong Kong 999077 P. R. China

2. City University of Hong Kong Shenzhen Research Institute Shenzhen 518000 P. R. China

Abstract

AbstractLiquid metal (LM) bioelectronics find widespread uses in healthcare devices and medical implants. However, the current LM‐based electrodes suffer from achieving a combination of features including stable conductivity, high tissue adhesion, stability, good biocompatibility, degradability, and recyclability. In this work, a stable LM electrode is prepared with an extremely high adhesion strength (8.9 MPa), which is tunable in a wide range by introducing an adhesive ureidopyrimidinone (UPy)‐based polymer to harvest the abovementioned properties. With the help of dynamic LM particle‐polymer interactions in the polymer matrix, LMs can not only enhance the adhesion properties but also form a percolated network at a low LM loading (38 vol%) to achieve a high conductance stability (R/R0 = 0.76 at 100% strain). The high adhesion strength provides a highly stable electrical connection with rigid components with a high stretchability of 1154% when mounting a resistor, while a relatively low adhesion makes it a comfortable wounded skin‐interfaced electrode for accelerating wound healing. Taking advantage of their tunable surface adhesion and biocompatibility, the as‐prepared LM electrodes provide a more reliable and friendly approach to the development of healthcare devices.

Funder

Shenzhen Knowledge Innovation Program

Innovation and Technology Fund

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3