Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics

Author:

Jiang Yuanwen1ORCID,Zhang Zhitao1ORCID,Wang Yi-Xuan12ORCID,Li Deling34ORCID,Coen Charles-Théophile1ORCID,Hwaun Ernie5ORCID,Chen Gan6ORCID,Wu Hung-Chin1ORCID,Zhong Donglai1ORCID,Niu Simiao1ORCID,Wang Weichen6ORCID,Saberi Aref1ORCID,Lai Jian-Cheng17ORCID,Wu Yilei1ORCID,Wang Yang6ORCID,Trotsyuk Artem A.89,Loh Kang Yong10,Shih Chien-Chung1ORCID,Xu Wenhui6,Liang Kui11ORCID,Zhang Kailiang11,Bai Yihong2,Gurusankar Gurupranav1ORCID,Hu Wenping2,Jia Wang4,Cheng Zhen3ORCID,Dauskardt Reinhold H.6,Gurtner Geoffrey C.9ORCID,Tok Jeffrey B.-H.1ORCID,Deisseroth Karl81213ORCID,Soltesz Ivan5ORCID,Bao Zhenan1ORCID

Affiliation:

1. Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.

2. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.

3. Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA 94305, USA.

4. Department of Neurosurgery, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.

5. Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.

6. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

7. State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

8. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

9. Department of Surgery, Stanford University, Stanford, CA 94305, USA.

10. Department of Chemistry, Stanford Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA.

11. BOE Technology Center, BOE Technology Group Co., Ltd., Beijing 100176, China.

12. Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.

13. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

Abstract

Intrinsically stretchable bioelectronic devices based on soft and conducting organic materials have been regarded as the ideal interface for seamless and biocompatible integration with the human body. A remaining challenge is to combine high mechanical robustness with good electrical conduction, especially when patterned at small feature sizes. We develop a molecular engineering strategy based on a topological supramolecular network, which allows for the decoupling of competing effects from multiple molecular building blocks to meet complex requirements. We obtained simultaneously high conductivity and crack-onset strain in a physiological environment, with direct photopatternability down to the cellular scale. We further collected stable electromyography signals on soft and malleable octopus and performed localized neuromodulation down to single-nucleus precision for controlling organ-specific activities through the delicate brainstem.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3