In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al0.74Sc0.26N Films at 1 V

Author:

Schönweger Georg12ORCID,Wolff Niklas34ORCID,Islam Md Redwanul3ORCID,Gremmel Maike3,Petraru Adrian1ORCID,Kienle Lorenz34ORCID,Kohlstedt Hermann14ORCID,Fichtner Simon23ORCID

Affiliation:

1. Department of Electrical and Information Engineering Kiel University Kaiserstrasse 2 D‐24143 Kiel Germany

2. Fraunhofer Institute for Silicon Technology (ISIT) Fraunhoferstr. 1 D‐25524 Itzehoe Germany

3. Department of Material Science Kiel University Kaiserstrasse 2 D‐24143 Kiel Germany

4. Kiel Nano, Surface and Interface Science (KiNSIS) Kiel University Christian‐Albrechts‐Platz 4 D‐24118 Kiel Germany

Abstract

AbstractAnalog switching in ferroelectric devices promises neuromorphic computing with the highest energy efficiency if limited device scalability can be overcome. To contribute to a solution, one reports on the ferroelectric switching characteristics of sub‐5 nm thin Al0.74Sc0.26N films grown on Pt/Ti/SiO2/Si and epitaxial Pt/GaN/sapphire templates by sputter‐deposition. In this context, the study focuses on the following major achievements compared to previously available wurtzite‐type ferroelectrics: 1) Record low switching voltages down to 1 V are achieved, which is in a range that can be supplied by standard on‐chip voltage sources. 2) Compared to the previously investigated deposition of ultrathin Al1−xScxN films on epitaxial templates, a significantly larger coercive field (Ec) to breakdown field ratio is observed for Al0.74Sc0.26N films grown on silicon substrates, the technologically most relevant substrate‐type. 3) The formation of true ferroelectric domains in wurtzite‐type materials is for the first time demonstrated on the atomic scale by scanning transmission electron microscopy (STEM) investigations of a sub‐5 nm thin partially switched film. The direct observation of inversion domain boundaries (IDB) within single nm‐sized grains supports the theory of a gradual domain‐wall driven switching process in wurtzite‐type ferroelectrics. Ultimately, this should enable the analog switching necessary for mimicking neuromorphic concepts also in highly scaled devices.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3