High Quality Epitaxial Piezoelectric and Ferroelectric Wurtzite Al1‐xScxN Thin Films

Author:

Zeng Yang1,Lei Yihan23,Wang Yanghe23,Cheng Mingqiang23,Liao Luocheng23,Wang Xuyang23,Ge Jinxin23,Liu Zhenghao23,Ming Wenjie23,Li Chao23,Xie Shuhong14,Li Jiangyu23,Li Changjian23ORCID

Affiliation:

1. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering Xiangtan University Xiangtan Hunan 411105 China

2. Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China

3. Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices Southern University of Science and Technology Shenzhen Guangdong 518055 China

4. Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering Xiangtan University Xiangtan Hunan 411105 China

Abstract

AbstractPiezoelectric and ferroelectric wurtzite are promising to reshape modern microelectronics because they can be easily integrated with mainstream semiconductor technology. Sc doped AlN (Al1‐xScxN) has attracted much attention for its enhanced piezoelectric and emerging ferroelectric properties, yet the commonly used sputtering results in polycrystalline Al1‐xScxN films with high leakage current. Here, the pulsed laser deposition of single crystalline epitaxial Al1‐xScxN thin films on sapphire and 4H‐SiC substrates is reported. Pure wurtzite phase is maintained up to x = 0.3 with ≤0.1 at% oxygen contamination. Polarization is estimated to be 140 µC cm−2 via atomic scale microscopy imaging and found to be switchable via a scanning probe. The piezoelectric coefficient is found to be five times of the undoped one when x = 0.3, making it desirable for high‐frequency radiofrequency (RF) filters and 3D nonvolatile memories.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3