Visible‐Light‐Activated Molecular Machines Kill Fungi by Necrosis Following Mitochondrial Dysfunction and Calcium Overload

Author:

Santos Ana L.12ORCID,Beckham Jacob L.1ORCID,Liu Dongdong1ORCID,Li Gang1ORCID,van Venrooy Alexis1,Oliver Antonio23,Tegos George P.4ORCID,Tour James M.1567ORCID

Affiliation:

1. Department of Chemistry Rice University Houston TX 77005 USA

2. IdISBA – Fundación de Investigación Sanitaria de las Islas Baleares Palma 07120 Spain

3. Servicio de Microbiologia Hospital Universitari Son Espases Palma 07120 Spain

4. Office of Research Reading Hospital Tower Health, 420 S. Fifth Avenue West Reading PA 19611 USA

5. Smalley‐Curl Institute Rice University Houston TX 77005 USA

6. Department of Materials Science and NanoEngineering Rice University Houston TX 77005 USA

7. NanoCarbon Center and the Welch Institute for Advanced Materials Rice University Houston TX 77005 USA

Abstract

AbstractInvasive fungal infections are a growing public health threat. As fungi become increasingly resistant to existing drugs, new antifungals are urgently needed. Here, it is reported that 405‐nm‐visible‐light‐activated synthetic molecular machines (MMs) eliminate planktonic and biofilm fungal populations more effectively than conventional antifungals without resistance development. Mechanism‐of‐action studies show that MMs bind to fungal mitochondrial phospholipids. Upon visible light activation, rapid unidirectional drilling of MMs at ≈3 million cycles per second (MHz) results in mitochondrial dysfunction, calcium overload, and ultimately necrosis. Besides their direct antifungal effect, MMs synergize with conventional antifungals by impairing the activity of energy‐dependent efflux pumps. Finally, MMs potentiate standard antifungals both in vivo and in an ex vivo porcine model of onychomycosis, reducing the fungal burden associated with infection.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3