Effect of Annealing on Resistive Switching Properties of Glancing Angle Deposition‐Assisted WO3 Thin Films

Author:

Lamichhane Shiva1,Sharma Savita2,Tomar Monika34,Chowdhuri Arijit5ORCID

Affiliation:

1. Department of Physics and Astrophysics University of Delhi Delhi 110007 India

2. Department of Physics Miranda House University of Delhi Delhi 110007 India

3. Physics Department Kalindi College University of Delhi Delhi 110008 India

4. Institute of Eminence University of Delhi Delhi 110007 India

5. Acharya Narendra Dev College University of Delhi Kalkaji New Delhi 110019 India

Abstract

Herein, the impact of postdeposition annealing on resistive switching behavior of radio frequency magnetron sputtered WO3 thin films is reported. Films are deposited under glancing angle deposition (GLAD) configuration of sputtering at varying GLAD angle from 65° to 80°. Structure transition from monoclinic to orthorhombic phase in deposited WO3 films is perceived after ex situ annealing at temperature of 400 °C. Resistive switching properties show shift from bipolar to unipolar switching on postdeposition annealing. WO3 films show unipolar switching behavior after ex situ annealing for all prepared samples. The value of resistance in high resistance state is lowered after ex situ heating treatment and interestingly switching voltage also reduces to 3 V from 7 V after annealing treatment. The ratio of high to low resistance state for annealed WO3 film fabricated at 70° GLAD angle is achieved to be maximum (≈219). A detailed charge transport mechanism shows that ohmic behavior is dominant current conduction mechanism at lower applied voltage, while space charge limited current and Child's law are dominant at higher applied voltages. Obtained results encourage utilization of prepared WO3 thin films toward a wide variety of applications in optoelectronics, microelectronics, and environmental engineering along with advanced electronics such as resistive memory devices.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3