Dielectric Properties and Carrier Transport Mechanism in Annealed HfOx‐Based Resistive Random Access Memory Devices

Author:

Bai Jiao1,Xie Weiwei1,Li Yue2,Qin Fuwen3,Wang Dejun12ORCID

Affiliation:

1. Key Laboratory of Intelligent Control and Optimization for Industrial Equipment (Dalian University of Technology) Ministry of Education School of Control Science and Engineering Dalian University of Technology Dalian 116024 China

2. Key Laboratory of Integrated Circuit and Biomedical Electronic System, Liaoning Province Dalian University of Technology Dalian 116023 China

3. State Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education) Dalian University of Technology Dalian 116024 China

Abstract

The diversity of the carrier transport mechanism in the resistive switching process remains a significant obstacle for the design and application of resistive random access memory (RRAM) devices. In this study, the influence of annealing on the dielectric properties of the Ti/HfOx/Pt RRAM device and its associated carrier transport mechanism is investigated. The results reveal that the current conduction in both annealed and unannealed devices is primarily attributed to grain boundary (GB) relaxation, with only the GB acting as a depletion layer that induces dielectric relaxation. Furthermore, annealing decreases the interfacial polarization and changes the relaxation time at the GB. In addition, the charge carriers exhibit nearest‐neighbor hopping conduction at a higher temperature in Ti/HfOx/Pt RRAM devices, whereas variable‐range‐hopping conduction occurs at lower temperatures. Long‐range charge carrier transport also plays a significant role in the conduction process. To offer a deeper understanding of the conduction processes in the Ti/HfOx/Pt RRAM device, a carrier transport model is proposed, which provides valuable insights into the intricate mechanisms governing conduction in these devices.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3