Comparative Performance Evaluation for 1.2–10kV Conventional and Superjunction GaN Current Aperture Vertical Electron Transistors

Author:

Torky Mohamed1ORCID,Zhao Yanzhen1,Lazos Panagiotis1,Chow T. Paul1

Affiliation:

1. Department of Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute 110 8th street Troy NY 12180 USA

Abstract

The performance potentials and limits for GaN current aperture vertical electron transistors with conventional, doped, and natural polarization superjunction (PSJ) drift layers at 1.2–10 kV breakdown voltage (BV) ratings are quantitatively compared. The static and dynamic performance parameters for each device are simulated and extracted. The specific on‐resistance RON,sp and specific total charge QT,sp (defined as the sum of specific gate charge QG,sp and specific drain–source charge QDS,sp) are extracted from Medici technology computer‐aided design simulations representing both the static and dynamic performance respectively. Moreover, a developed figure‐of‐merit (FoM) (RON,sp · QT,sp) is used to quantitively compare the performance of these field‐effect transistors in the range of BV ratings. Compared to the doped superjunction (DSJ) and conventional CAVETs, natural PSJ CAVET exhibits 1%–60% and 70%–99% reduction in RON,sp, while it is 100 to 1000× reduction in QT,sp, at BV between 1.2 and 10 kV respectively. Simultaneously, 22%–80% and 80%–99% reduction in performance FoM respectively are found.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3