Assessment of Wafer‐Level Transfer Techniques of Graphene with Respect to Semiconductor Industry Requirements

Author:

Wittmann Sebastian12ORCID,Pindl Stephan2,Sawallich Simon3ORCID,Nagel Michael4ORCID,Michalski Alexander4,Pandey Himadri5ORCID,Esteki Ardeshir2ORCID,Kataria Satender2ORCID,Lemme Max C.26ORCID

Affiliation:

1. Infineon Technologies AG Am Campeon 4 85579 Neubiberg Germany

2. RWTH Aachen University Otto‐Blumenthal‐Straße 2 52074 Aachen Germany

3. Infineon Technologies AG Wernerwerkstraße 2 93049 Regensburg Germany

4. Protemics GmbH Otto‐Blumenthal‐Straße 25 52074 Aachen Germany

5. Advantest Europe GmbH Herrenburgerstr 130 71034 Böblingen Germany

6. AMO GmbH Otto‐Blumenthal‐Straße 25 52074 Aachen Germany

Abstract

AbstractGraphene is a promising candidate for future electronic applications. Manufacturing graphene‐based electronic devices typically requires graphene transfer from its growth substrate to another desired substrate. This key step for device integration must be applicable at the wafer level and meet the stringent requirements of semiconductor fabrication lines. In this work, wet and semidry transfer (i.e. wafer bonding) are evaluated regarding wafer scalability, handling, potential for automation, yield, contamination, and electrical performance. A wafer scale tool is developed to transfer graphene from 150 mm copper foils to 200 mm silicon wafers without adhesive intermediate polymers. The transferred graphene coverage ranges from 97.9 % to 99.2 % for wet transfer and from 17.2 % to 90.8 % for semidry transfer, with average copper contaminations of 4.7 × 1013 (wet) and 8.2 × 1012 atoms/cm2 (semidry). The corresponding electrical sheet resistance extracted from terahertz time‐domain spectroscopy varied from 450 to 550 Ω sq−1 for wet transfer and from 1000 to 1650 Ω sq−1 for semidry transfer. Although the wet transfer is superior in terms of yield, carbon contamination level, and electrical quality, wafer bonding yields lower copper contamination levels and provides scalability due to existing industrial tools and processes. Our conclusions can be generalized to all 2D materials.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the quality of large-area monolayer graphene grown on liquid copper for size-selective ionic/molecular membrane separations;Materials Research Express;2023-10-01

2. Potential of Transition Metal Dichalcogenide Transistors for Flexible Electronics Applications;Advanced Electronic Materials;2023-06-28

3. Resistive Switching and Current Conduction Mechanisms in Hexagonal Boron Nitride Threshold Memristors with Nickel Electrodes;Advanced Functional Materials;2023-05-05

4. Controlling strain in suspended Nanomaterials;2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3