Assessing the quality of large-area monolayer graphene grown on liquid copper for size-selective ionic/molecular membrane separations

Author:

Romaniak GrzegorzORCID,Cheng PeifuORCID,Dybowski KonradORCID,Kula PiotrORCID,Kidambi Piran RORCID

Abstract

Abstract Monolayer graphene growth on liquid copper (Cu) has attracted attention due to advantages of a flat/smooth catalytic growth surface, high synthesis temperature (>1080 °C) as well as the possibility of forming graphene domains that are mobile on the liquid Cu with potential to minimize grain boundary defects and self-assemble into a continuous monolayer film. However, the quality of monolayer graphene grown on liquid copper and its suitability for size-selective ionic/molecular membrane separations has not been evaluated/studied. Here, we probe the quality of monolayer graphene grown on liquid Cu (via a metallurgical process, HSMG®) using Scanning Electron Microscope (SEM), High-resolution transmission electron microscope (HR-TEM), Raman spectroscopy and report on a facile approach to assess intrinsic sub-nanometer to nanometer-scale defects over centimeter-scale areas. We demonstrate high transfer yields of monolayer graphene (>93% coverage) from the growth substrate to polyimide track etched membrane (PITEM, pore diameter ∼200 nm) supports to form centimeter-scale atomically thin membranes. Next, we use pressure-driven transport of ethanol to probe defects > 60 nm and diffusion-driven transport of analytes (KCl ∼0.66 nm, L-Tryptophan ∼0.7–0.9 nm, Vitamin B12 ∼1–1.5 nm and Lysozyme ∼3.8–4 nm) to probe nanoscale and sub-nanometer scale defects. Diffusive transport confirms the presence of intrinsic sub-nanometer to nanometer scale defects in monolayer graphene grown on liquid Cu are no less than that in high-quality graphene synthesized via chemical vapor deposition (CVD) on solid Cu. Our work not only benchmarks quality of graphene grown on liquid copper for membrane applications but also provides fundamental insights into the origin of intrinsic defects in large-area graphene synthesized via bottom-up processes for membrane applications.

Funder

NSF

University of Technology, Vice-Rector for Science of Lodz University

Implementation Doctoral School

DOE

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3