End-of-production Ultraviolet A and Blue Light Similarly Increase Lettuce Coloration and Phytochemical Concentrations

Author:

Kelly Nathan1,Runkle Erik S.1

Affiliation:

1. Controlled-Environment Lighting Laboratory, Department of Horticulture, 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, USA

Abstract

Anthocyanins are a group of human-health-promoting phenolic compounds that influence the pigmentation of red-leaf lettuce (Lactuca sativa). Ultraviolet A (UVA; 315–399 nm) and blue (B; 400–499 nm) light can increase the concentrations of phenolic compounds but also suppress cellular expansion, which can limit harvestable biomass accumulation. It is not known whether UVA or B light is more effective at increasing phenolic compound concentrations when they are each applied at the same photon flux density. Our objective was to evaluate the efficacy of UVA and B light when added during the end of production (EOP) at promoting phenolic compound synthesis and red-leaf coloration without limiting biomass accumulation. We grew red-leaf lettuce ‘Rouxai’ in a controlled indoor environment at an air temperature of 22 °C under warm-white and red light-emitting diodes (LEDs). On day 24, 30 or 60 µmol·m−2·s−1 from UVA, B, UVA plus B, or red plus green LEDs was added during the last 6 days of the 30-day production period. UVA and B light, alone or combined, similarly increased leaf redness (by up to 72%), total phenolic concentration (by up to 92%), total anthocyanin concentration (by up to 2.7-fold), and relative chlorophyll concentration (by up to 20%) and did not inhibit growth, compared with lettuce grown without EOP supplemental lighting. Considering B light was as effective as UVA light at increasing leaf color and phytonutrient density and that B LEDs are more electrically effective, economical, and durable, an enriched blue-light spectrum at the EOP is a comparatively sustainable method to increase crop quality without suppressing biomass accumulation.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Reference54 articles.

1. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability;Ahmad,1998

2. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent;Ainsworth,2007

3. Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables;Alrifai,2019

4. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses;Balasundram,2006

5. Blue-light photoreceptors in higher plants;Briggs,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3