Ultraviolet A and Blue Light Transiently Regulate Total Phenolic and Anthocyanin Concentrations in Indoor-grown Red-leaf Lettuce

Author:

Kelly Nathan1,Runkle Erik S.1

Affiliation:

1. Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA

Abstract

In controlled environments, supplementing a light spectrum with ultraviolet A (UVA; 315–399 nm) or blue (B; 400–499 nm) light increases the concentrations of phenolic compounds that can increase quality attributes, such as leaf pigmentation and nutritional quality of lettuce (Lactuca sativa). However, B light and sometimes UVA light can inhibit leaf expansion and biomass accumulation when continuously applied, whereas applying it only at the end of the production cycle can increase lettuce quality with little to no effect on crop yield. Our objective was to quantify the persistency of periodic supplemental UVA or B light and compare end-of-production with continuously applied supplemental light during indoor lettuce production on quality attributes and biomass accumulation. We hypothesized that supplemental UVA or B light would be more effective later, rather than earlier, during production with increasing lettuce quality attributes. We grew ‘Rouxai’ red-leaf lettuce hydroponically at an air temperature of 23 °C under 75 μmol⋅m−2⋅s−1 of red (peak = 664 nm) plus 75 μmol⋅m−2⋅s−1 of warm-white light provided by light-emitting diodes. The supplemental lighting treatments consisted of adding 30 μmol⋅m−2⋅s−1 of UVA (peak= 386 nm) or B (peak = 449 nm) light during the seedling phase (P1; days 4–12), growth phase (P2; days 12–20), finishing phase (P3; days 20–28), or the entire time (ET; days 4–28). Supplemental UVA or B light applied at any individual phase did not inhibit biomass accumulation, whereas enriched B light during the entire production period inhibited fresh mass compared with no supplemental light. Additionally, supplemental UVA or B light during P3 or ET similarly increased total phenolic and anthocyanin concentrations. Finally, applying UVA or B light during P1 or P2 had no residual effect on mature plant growth or quality at harvest. We concluded that the end of the production cycle is the optimal time to apply supplemental UVA or B light to improve lettuce coloration and phenolic content, that earlier application elicits transient responses, and that continuous application improves lettuce quality but inhibits biomass accumulation. Finally, there are potential energy savings by using end-of-production supplemental light compared with continuous application of the same spectrum.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Reference48 articles.

1. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism;Ahmad M,1998

2. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent;Ainsworth EA,2007

3. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis;Bate NJ,1994

4. Do UV-A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana?;Brelsford CC,2019

5. UVA radiation is beneficial for yield and quality of indoor cultivated lettuce;Chen Y,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3