Empirical Mode Decomposition Operator for Dewowing GPR Data

Author:

Battista Bradley M.1,Addison Adrian D.1,Knapp Camelia C.1

Affiliation:

1. Department of Geological Sciences, University of South Carolina, 701 Sumter St. EWS 617, Columbia, South Carolina 29208

Abstract

Signal processing tools available to ground penetrating radar data used for shallow subsurface imaging and hydrogeophysical parameter estimation are significantly handled using the same tools available to seismic reflection data. Overall, the same tools produce interpretable images from both data types, but particular noise (wow noise) in electromagnetic data must be removed before stable and accurate quantitative results can be produced. Wow noise is an inherent, nonlinear electromagnetic interference and a significant component of GPR data. Further, the nonlinear and non-stationary nature of wow noise provides a strong argument for preprocessing radar traces with time-domain operators. Time-domain operators designed for nonlinear signals are under increasing development for both electromagnetic and acoustic signal processing. This work demonstrates optimal wow noise removal from ground penetrating radar data using the empirical mode decomposition. The technique provides a data-driven approach to empirically dewowing GPR data.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3