Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data

Author:

Battista Bradley Matthew123,Knapp Camelia123,McGee Tom123,Goebel Vaughn123

Affiliation:

1. University of South Carolina, Department of Geological Sciences, Columbia, South Carolina. .

2. University of Mississippi, CMRET, University, Misssissippi. .

3. Lookout Geophysical Company, Palisade, Colorado. .

Abstract

Advancements in signal processing may allow for improved imaging and analysis of complex geologic targets found in seismic reflection data. A recent contribution to signal processing is the empirical mode decomposition (EMD) which combines with the Hilbert transform as the Hilbert-Huang transform (HHT). The EMD empirically reduces a time series to several subsignals, each of which is input to the same time-frequency environment via the Hilbert transform. The HHT allows for signals describing stochastic or astochastic processes to be analyzed using instantaneous attributes in the time-frequency domain. The HHT is applied herein to seismic reflection data to: (1) assess the ability of the EMD and HHT to quantify meaningful geologic information in the time and time-frequency domains, and (2) use instantaneous attributes to develop superior filters for improving the signal-to-noise ratio. The objective of this work is to determine whether the HHT allows for empirically-derived characteristics to be used in filter design and application, resulting in better filter performance and enhanced signal-to-noise ratio. Two data sets are used to show successful application of the EMD and HHT to seismic reflection data processing. Nonlinear cable strum is removed from one data set while the other is used to show how the HHT compares to and outperforms Fourier-based processing under certain conditions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 198 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3