Human Fall Detection with Ultra-Wideband Radar and Adaptive Weighted Fusion

Author:

Huang Ling1,Zhu Anfu1,Qian Mengjie1,An Huifeng1

Affiliation:

1. School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

To address the challenges in recognizing various types of falls, which often exhibit high similarity and are difficult to distinguish, this paper proposes a human fall classification system based on the SE-Residual Concatenate Network (SE-RCNet) with adaptive weighted fusion. First, we designed the innovative SE-RCNet network, incorporating SE modules after dense and residual connections to automatically recalibrate feature channel weights and suppress irrelevant features. Subsequently, this network was used to train and classify three types of radar images: time–distance images, time–distance images, and distance–distance images. By adaptively fusing the classification results of these three types of radar images, we achieved higher action recognition accuracy. Experimental results indicate that SE-RCNet achieved F1-scores of 94.0%, 94.3%, and 95.4% for the three radar image types on our self-built dataset. After applying the adaptive weighted fusion method, the F1-score further improved to 98.1%.

Funder

National Natural Science Foundation of China Special Program

Lanzhou Municipal Talent Innovation and Entrepreneurship Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3