When and How Can the Stratosphere Modify the Midlatitude Cold Air Outbreaks in Northern Winter: An Isentropic Meridional Mass Circulation View

Author:

Yu Yueyue1ORCID,Ren Rongcai12ORCID,Liu Bowen23ORCID,Wang Lin14ORCID,Chen Haishan1ORCID,Yang Yifan1

Affiliation:

1. Key Laboratory of Meteorological Disaster Ministry of Education (KLME) Joint International Research Laboratory of Climate and Environment Change (ILCEC) Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science & Technology Nanjing China

2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

3. University of Chinese Academy of Sciences Beijing China

4. Center for Monsoon System Research Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

Abstract

AbstractCold air outbreaks (CAOs) in northern winter can be attributed to the variations in the lower‐tropospheric equatorward cold branch (CB) of the isentropic meridional mass circulation (IMMC) across the subpolar latitudes. Understanding when and how the variations of CB are related to the stratosphere is crucial for improving the extended‐range forecast skills of CAOs in winter. Investigation on the vertical coupling of the stratospheric and tropospheric branches of IMMC suggests that the CB (or CAOs) exhibits two major timescales: sub‐monthly (10–30 days) and monthly‐to‐seasonal (>30 days). The CB can be modified by the stratospheric variability that is represented by the stratospheric poleward warm branch (WB‐ST) of the IMMC at monthly‐to‐seasonal timescales via the two‐way stratosphere‐troposphere coupling. At sub‐monthly timescales, however, the upward one‐way coupling from the troposphere to the stratosphere dominates. While changes of the CB always precede those of the WB‐ST at both timescales, indicating the upward tropospheric wave forcing into the stratosphere, the downward impacts of the WB‐ST on the CB (particularly CAOs in North America) are observed only at monthly‐to‐seasonal timescales. Specifically, the accumulated effect of the monthly‐to‐seasonal mass transport by the poleward WB‐ST can be strong enough to dominate the Arctic total column airmass changes, producing not only a barotropic structure of the Northern Annular Mode but also direct changes to the low‐level ageostrophic zonal‐mean meridional flow. The anomalous low‐level ageostrophic flow, in turn, plays a greater role in intensifying (weakening) the equatorward CB following a stronger (weaker) WB‐ST than tropospheric wave activities.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3