Improved Hydrogeophysical Parameter Estimation from Empirical Mode Decomposition Processed Ground Penetrating Radar Data

Author:

Addison Adrian D.1,Battista Bradley M.1,Knapp Camelia C.1

Affiliation:

1. Department of Geological Sciences, University of South Carolina, 701 Sumter St. EWS 617, Columbia, South Carolina 29208

Abstract

Various techniques have been designed to maximize the use of ground penetrating radar (GPR) as an exploration tool. Improvements in signal processing are expected to further facilitate the accuracy of parameters derived from using GPR in certain geologic environments. Common-offset GPR data were collected at the Marine Corps Air Station (MCAS) in Beaufort, South Carolina, and dielectric constants were calculated following the application of the empirical mode decomposition (EMD) for dewowing GPR traces. Conventional signal processing is applied to the GPR traces to provide hydrogeophysical parameter estimates such as volumetric water content, porosity, and hydraulic conductivity. The results are validated using a coincident vertical radar profile, existing hydraulic data from direct measurements, and comparing EMD derived parameters with those non-EMD derived. The results of the comparison between the EMD and non-EMD methods show improved hydrogeophysical estimations from the EMD processed data. Dielectric constant [Formula: see text] values from the non-EMD method are outside the range of the values for all geologic materials [Formula: see text]. The subsequent parameter estimates using dielectric constants derived from non-EMD processed data yield erroneous results therefore justifying the use of EMD as a method in dewowing GPR data for quantitative analyses.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3