Affiliation:
1. College of Information and Electronic Technology, Jiamusi University, Jiamusi 154007, China
Abstract
Aiming at solving network delay caused by large chunks of data in industrial Internet of Things, a data compression algorithm based on edge computing is creatively put forward in this paper. The data collected by sensors need to be handled in advance and are then processed by different single packet quantity K and error threshold e for multiple groups of comparative experiments, which greatly reduces the amount of data transmission under the premise of ensuring the instantaneity and effectiveness of data. On the basis of compression processing, an outlier detection algorithm based on isolated forest is proposed, which can accurately identify the anomaly caused by gradual change and sudden change and control and adjust the action of equipment, in order to meet the control requirement. As is shown by experimental simulation, the isolated forest algorithm based on partition outperforms box graph and K-means clustering algorithm based on distance in anomaly detection, which verifies the feasibility and advantages of the former in data compression and detection accuracy.
Funder
Basic Research Project of Heilongjiang Province Department of Education
Subject
Computer Science Applications,Software
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献