Landsat 8 and Sentinel-2 Fused Dataset for High Spatial-Temporal Resolution Monitoring of Farmland in China’s Diverse Latitudes

Author:

Zhang Haiyang1,Zhang Yao1ORCID,Gao Tingyao1,Lan Shu1,Tong Fanghui1,Li Minzan1

Affiliation:

1. Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing 100083, China

Abstract

Crop growth and development exhibit high temporal heterogeneity. It is crucial to capture the dynamic characteristics of crop growth using intensive time-series data. However, single satellites are limited by revisit cycles and weather conditions to provide dense time-series data for earth observations. However, up until now, there has been no proposed remote sensing fusion product that offers high spatial-temporal resolution specifically for farmland monitoring. Therefore, focusing on the demands of farmland remote sensing monitoring, identifying quantitative conversion relationships between multiple sensors, and providing high spatial-temporal resolution products is the first step that needs to be addressed. In this study, a fused Landsat 8 (L8) Operational Land Imager (OLI) and Sentinel-2 (S-2) multi-spectral instruments (MSI) data product for regional monitoring of farmland at high, mid, and low latitudes in China is proposed. Two image pairs for each study area covering different years were acquired from simultaneous transits of L8 OLI and S-2 MSI sensors. Then, the isolation forest (iForest) algorithm was employed to remove the anomalous pixels of image pairs and eliminate the influence of anomalous data on the conversion relationships. Subsequently, the adjustment coefficients for multi-source sensors at mixed latitudes with high spatial resolution were obtained using an ordinary least squares regression method. Finally, the L8-S-2 fused dataset based on the adjustment coefficients is proposed, which is suitable for different latitude farming areas in China. The results showed that the iForest algorithm could effectively improve the correlation between the corresponding spectral bands of the two sensors at a spatial resolution of 10 m. After the removal of anomalous pixels, excellent correlation and consistency were obtained in three study areas, and the Pearson correlation coefficients between the corresponding spectral bands almost all exceeded 0.88. Furthermore, we mixed the six image pairs of the three latitudes to obtain the adjustment coefficients derived for integrated L8 and S-2 data with high-spatial-resolution. The significance and accuracy quantification of the adjustment coefficients were thoroughly examined from three dimensions: qualitative and quantitative analyses, and spatial heterogeneity assessment. The obtained results were highly satisfactory, affirming the validity and precision of the adjustment coefficients. Finally, we applied the adjustment coefficients to crop monitoring in three latitudes. The normalized difference vegetation index (NDVI) time-series curves drawn by the integrated dataset could accurately describe the cropping system and capture the intensity changes of crop growth within the high, middle, and low latitudes of China. This study provides valuable insights into enhancing the application of multi-source remote sensing satellite data for long-term, continuous quantitative inversion of surface parameters and is of great significance for crop remote sensing monitoring.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3