Leveraging 5G and cloud computing for outlier detection in IoT environments: A KNN approach

Author:

Sahaaya Arul Mary S. A.1,Anwar Basha H.2,Mohanraj G.3,Kiruthikaa R.4,Saranya N.5ORCID

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology Vellore India

2. Department of Computer Science and Engineering Rajalakshmi Institute of Technology Chennai India

3. School of Computer Science Engineering and Information Systems Vellore Institute of Technology Vellore India

4. Department of ECE Karpagam Institute of Technology Coimbatore India

5. Department of Electrical and Electronics Engineering Kathir College of Engineering Coimbatore India

Abstract

AbstractInternet of Things (IoT) becomes a prominent sensing paradigm between the devices. Its evolution in the global digital increases extensively in various domains. For IoT application's sensors are the primary source for generating data. These collected data are subject to the identification and detection of outliers/anomalies. The massive volume of data generation makes anomaly detection a complex and challenging task. The anomalies affect the data accuracy and data quality. In this paper, the k‐NN classifier is proposed for enhancing classification accuracy. K‐NN follows a non‐parametric strategy and is one of the known classification algorithms. In the proposed system, k‐NN is utilized to perform classification or regression with estimations of their k nearest neighbors. The proposed system consists of three major processes such as data preprocessing, classification, visualization. This study explores the utilization of 5G connectivity and cloud computing infrastructure for outlier detection in IoT data streams. Leveraging the K‐Nearest Neighbors (KNN) classifier, our methodology focuses on efficiently identifying anomalies in IoT data. By integrating 5G connectivity for real‐time data transmission and cloud‐based machine learning for scalable analysis, we demonstrate a robust framework for outlier detection in IoT environments. The Experimental work with the proposed method is carried out using training and observation is tabulated with respective classes. As a result, on the three metrics, the proposed k‐NN proves its efficiency is far better than the others, with an average of 98.4% of accuracy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3