Cyber-Internet Security Framework to Conquer Energy-Related Attacks on the Internet of Things with Machine Learning Techniques

Author:

Kumar Anand1,Dhabliya Dharmesh2,Agarwal Pankaj3,Aneja Nagender4ORCID,Dadheech Pankaj5ORCID,Jamal Sajjad Shaukat6ORCID,Antwi Owusu Agyeman7ORCID

Affiliation:

1. Department of Computer Science and Engineering, Cambridge Institute of Technology, North Campus, Bangalore, Karnataka, India

2. Department of Information Technology, Vishwakarma Institute of Information Technology, Pune, Maharashtra, India

3. School of Engineering and Technology, K. R. Manglam University, Gurugram, Haryana, India

4. School of Digital Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam

5. Department of Computer Science & Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan (SKIT), Jagatpura, Jaipur, Rajasthan, India

6. Department of Mathematics, College of Sciences, King Khalid University, Abha, Saudi Arabia

7. Ghana Communication Technology University, Department of Telecommunications Engineering, Accra, Ghana

Abstract

The Internet of Things (IoT) ushers in a new era of communication that depends on a broad range of things and many types of communication technologies to share information. This new age of communication will be characterised by the following characteristics: Because all of the IoT’s objects are connected to one another and because they function in environments that are not protected, it poses a significantly greater number of issues, constraints, and challenges than do traditional computing systems. This is due to the fact that traditional computing systems do not have as many interconnected components. Because of this, it is imperative that security be prioritised in a new approach, which is not something that is currently present in conventional computer systems. The Wireless Sensor Network, often known as WSN, and the Mobile Ad hoc Network are two technologies that play significant roles in the process of building an Internet of Things system. These technologies are used in a wide variety of activities, including sensing, environmental monitoring, data collecting, heterogeneous communication techniques, and data processing, amongst others. Because it incorporates characteristics of both MANET and WSN, IoT is susceptible to the same kinds of security issues that affect those other networks. An assault known as a Delegate Entity Attack (DEA) is a subclass of an attack known as a Denial of Service (DoS). The attacker sends an unacceptable number of control packets that have the appearance of being authentic. DoS assaults may take many different forms, and one of those kinds is an SD attack. Because of this, it is far more difficult to recognise this form of attack than a simple one that depletes the battery’s capacity. One of the other key challenges that arise in a network during an SD attack is that there is the need to enhance energy management and prolong the lifespan of IoT nodes. This is one of the other significant issues that arise in a network when an SD attack is occurs. It is recommended that you make use of a Random Number Generator with Hierarchical Intrusion Detection System, abbreviated as RNGHID for short. The ecosystem of the Internet of Things is likely to be segmented into a great number of separate sectors and clusters. The HIPS system has been partitioned into two entities, which are referred to as the Delegate Entity (DE) and the Pivotal Entity, in order to identify any nodes in the network that are behaving in an abnormal manner. These entities are known, respectively, as the Delegate Entity and the Pivotal Entity (PE). Once the anomalies have been identified, it will be possible to pinpoint the area of the SD attack torture and the damaging activities that have been taken place. A warning message, generated by the Malicious Node Alert System (MNAS), is broadcast across the network in order to inform the other nodes that the network is under attack. This message classifies the various sorts of attacks based on the results of an algorithm that employs machine learning. The proposed protocol displays various desired properties, such as the capacity to conduct indivisible authentication, rapid authentication, and minimum overhead in both transmission and storage. These are only a few of the desirable attributes.

Funder

King Khalid University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3