Development and Validation of a Cyber-Physical System Leveraging EFDPN for Enhanced WSN-IoT Network Security

Author:

Krishnasamy Sundaramoorthy1ORCID,Alotaibi Mutlaq B.2ORCID,Alehaideb Lolwah I.2,Abbas Qaisar2ORCID

Affiliation:

1. Department of Information Technology, Jerusalem College of Engineering (Autonomous) Pallikaranai, Chennai 600100, Tamil Nadu, India

2. College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

Abstract

In the current digital era, Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) are evolving, transforming human experiences by creating an interconnected environment. However, ensuring the security of WSN-IoT networks remains a significant hurdle, as existing security models are plagued with issues like prolonged training durations and complex classification processes. In this study, a robust cyber-physical system based on the Emphatic Farmland Fertility Integrated Deep Perceptron Network (EFDPN) is proposed to enhance the security of WSN-IoT. This initiative introduces the Farmland Fertility Feature Selection (F3S) technique to alleviate the computational complexity of identifying and classifying attacks. Additionally, this research leverages the Deep Perceptron Network (DPN) classification algorithm for accurate intrusion classification, achieving impressive performance metrics. In the classification phase, the Tunicate Swarm Optimization (TSO) model is employed to improve the sigmoid transformation function, thereby enhancing prediction accuracy. This study demonstrates the development of an EFDPN-based system designed to safeguard WSN-IoT networks. It showcases how the DPN classification technique, in conjunction with the TSO model, significantly improves classification performance. In this research, we employed well-known cyber-attack datasets to validate its effectiveness, revealing its superiority over traditional intrusion detection methods, particularly in achieving higher F1-score values. The incorporation of the F3S algorithm plays a pivotal role in this framework by eliminating irrelevant features, leading to enhanced prediction accuracy for the classifier, marking a substantial stride in fortifying WSN-IoT network security. This research presents a promising approach to enhancing the security and resilience of interconnected cyber-physical systems in the evolving landscape of WSN-IoT networks.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3