A Systematic Review on Machine Learning and Deep Learning Models for Electronic Information Security in Mobile Networks

Author:

Gupta ChaitanyaORCID,Johri IshitaORCID,Srinivasan KathiravanORCID,Hu Yuh-ChungORCID,Qaisar Saeed MianORCID,Huang Kuo-Yi

Abstract

Today’s advancements in wireless communication technologies have resulted in a tremendous volume of data being generated. Most of our information is part of a widespread network that connects various devices across the globe. The capabilities of electronic devices are also increasing day by day, which leads to more generation and sharing of information. Similarly, as mobile network topologies become more diverse and complicated, the incidence of security breaches has increased. It has hampered the uptake of smart mobile apps and services, which has been accentuated by the large variety of platforms that provide data, storage, computation, and application services to end-users. It becomes necessary in such scenarios to protect data and check its use and misuse. According to the research, an artificial intelligence-based security model should assure the secrecy, integrity, and authenticity of the system, its equipment, and the protocols that control the network, independent of its generation, in order to deal with such a complicated network. The open difficulties that mobile networks still face, such as unauthorised network scanning, fraud links, and so on, have been thoroughly examined. Numerous ML and DL techniques that can be utilised to create a secure environment, as well as various cyber security threats, are discussed. We address the necessity to develop new approaches to provide high security of electronic data in mobile networks because the possibilities for increasing mobile network security are inexhaustible.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetic fuzzy rules and hybrid QDCNN-F-DSAE for detecting attacker behavior with tuning of firewall;Australian Journal of Electrical and Electronics Engineering;2024-07-18

2. Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline;Electronics;2024-05-22

3. Using Deep Learning Algorithm in Security Informatics;International Journal of Innovative Science and Research Technology (IJISRT);2024-05-21

4. Research trends in deep learning and machine learning for cloud computing security;Artificial Intelligence Review;2024-05-02

5. Exploring Deep Learning Architectures for Enhanced Cyber Threat Detection: A Survey;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3