Synthesis, DNA-Binding, Anticancer Evaluation, and Molecular Docking Studies of Bishomoleptic and Trisheteroleptic Ru-Diimine Complexes Bearing 2-(2-Pyridyl)-quinoxaline

Author:

Balou Sofia1ORCID,Zarkadoulas Athanasios1ORCID,Koukouvitaki Maria1,Marchiò Luciano2ORCID,Efthimiadou Eleni K.1ORCID,Mitsopoulou Christiana A.1ORCID

Affiliation:

1. Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 157 71, Greece

2. Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi Parma, Parco Area delle Scienze 17A, I43124 Parma, Italy

Abstract

Herein, we report the synthesis and characterization of a bishomoleptic and a trisheteroleptic ruthenium (II) polypyridyl complex, namely, [Ru(bpy)2(2, 2′-pq)](PF6)2 (1) and [Ru(bpy) (phen) (2, 2′-pq)](PF6)2 (2), respectively, where bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, and 2, 2′-pq = 2-(2′-pyridyl)-quinoxaline. The complexes were characterized by elemental analysis, TGA, 1H-NMR, FT-IR, UV-Vis, emission spectroscopy, and electrochemistry. Their structures were confirmed by single-crystal X-ray diffraction analysis. Complexes 1 and 2 were crystalized in orthorhombic, Pbca, and monoclinic, P21/n systems, respectively. Various spectroscopic techniques were employed to investigate the interaction of both complexes with calf thymus DNA (CT-DNA). The experimental data were confirmed by molecular docking studies, employing two different DNA sequences. Both complexes, 1 and 2, bind with DNA via a minor groove mode of binding. MTT experiments revealed that both complexes induce apoptosis of MCF-7 (breast cancer) cells in low concentrations. Confocal microscopy indicated that 2 localizes in the nucleus and internalizes more efficiently in MCF-7 than in HEK-293.

Funder

National and Kapodistrian University of Athens

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3