Molecular Design, Spectroscopic, DFT, Pharmacological, and Molecular Docking Studies of Novel Ruthenium(III)–Schiff Base Complex: An Inhibitor of Progression in HepG2 Cells

Author:

Noureldeen Amani F. H.,Aziz Safa W.ORCID,Shouman Samia A.ORCID,Mohamed Magdy M.,Attia Yasmin M.,Ramadan Ramadan M.ORCID,Elhady Mostafa M.ORCID

Abstract

A novel ruthenium(III)–pyrimidine Schiff base was synthesized and characterized using different analytical and spectroscopic techniques. Molecular geometries of the ligand and ruthenium complex were investigated using the DFT-B3LYP level of theory. The quantum global reactivity descriptors were also calculated. Various biological and molecular docking studies of the complex are reported to explore its potential application as a therapeutic drug. Cytotoxicity of the complex was screened against cancer colorectal (HCT116), breast (MCF-7 and T47D), and hepatocellular (HepG2) cell lines as well as a human normal cell line (HSF). The complex effectively inhibited the tested cancer cells with variable degree with higher activity towards HepG2 (IC50 values were 29 μM for HepG2, 38.5 μM for T47D, 39.7 μM for HCT, and 46.7 μM for MCF-7 cells). The complex induced apoptosis and cell cycle arrest in the S phase of HepG2 cells. The complex significantly induced the expression of H2AX and caspase 3 and caspase 7 gene and the protein level of caspase 3, as well as inhibited VEGF-A and mTOR/AKT, SND1, and NF-kB gene expression. The molecular docking studies supported the increased total apoptosis of treated HepG2 cells due to strong interaction of the complex with DNA. Additionally, the possible binding interaction of the complex with caspase 3 could be responsible for the elevated activity of caspase 3–treated cells. The score values for the two receptors were −3.25 and −3.91 kcal/mol.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3