Characterizations of InN Thin Films Grown on Si (110) Substrate by Reactive Sputtering

Author:

Amirhoseiny M.1,Hassan Z.1,Ng S. S.1,Ahmad M. A.1

Affiliation:

1. Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

Abstract

Indium nitride (InN) thin films were deposited onto Si (110) by reactive sputtering and pure In target at ambient temperature. The effects of the Ar–N2sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy, and X-ray diffraction techniques. The optical properties of InN layers were examined by micro-Raman and Fourier transform infrared (FTIR) reflectance spectroscopy at room temperature. Structural analysis specified nanocrystalline structure with crystal size of 15.87 nm, 16.65 nm, and 41.64 nm for InN films grown at N2 : Ar ratio of 100 : 0, 75 : 25, and 50 : 50, respectively. The Raman spectra indicates well defined peaks at 578, 583, and 583 cm−1, which correspond to the A1(LO) phonon of the hexagonal InN films grown at gas ratios of 100 : 0, 75 : 25 and 50 : 50 N2 : Ar, respectively. Results of FTIR spectroscopy show the clearly visible TO [E1(TO)] phonon mode of the InN at 479 cm−1just for film that were deposited at 50 : 50 N2 : Ar. The X-ray diffraction results indicate that the layers consist of InN nanocrystals. The highest intensity of InN (101) peak and the best nanocrystalline InN films can be seen under the deposition condition with N2 : Ar gas mixture of 50 : 50.

Funder

Research University Grants

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3