Research on Low-Frequency Swaying Mechanism of Metro Vehicles Based on Wheel-Rail Relationship

Author:

Shi Yixuan1ORCID,Dai Huanyun1,Wang Qunsheng1ORCID,Wei Lai1,Shi Huailong1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Abstract

For the worn state of the wheel, metro vehicles often suffer a serious carbody swaying issue, which causes the lateral stability of the vehicle to exceed the limit and affects the ride comfort. An experimental test was carried out on this investigation to study the carbody swaying of the metro vehicle. The field results show that the vehicle system vibrates at around 2.5 Hz in the lateral direction, which leads to the low-frequency swaying on the carbody. In order to explore the formation mechanism of the carbody low-frequency swaying and its relationship with the geometry matching of wheel-rail contact, measured rail and wheel profiles are employed to present a comparative analysis with respect to the initial contact geometry. A multibody dynamic railway vehicle system is established further. Time-domain simulations state that the 2.5 Hz vibration on the carbody belongs to the natural frequency of the vehicle, and the amplitude is larger for the measured wheels than that of the standard wheel profiles. By using the root-locus method, it can be determined that the 2.5 Hz vibration corresponds to the upper swaying mode of the carbody. With the increase in the wheel-rail equivalent conicity, the hunting frequency of bogie increases gradually, which converts frequency with the upper swaying frequency of carbody and leads to carbody low-frequency swaying.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3