Affiliation:
1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu, China
Abstract
Due to coupling with carbody suspension modes in railway vehicles, primary hunting can lead to significant low frequency swaying of the carbody, severely deteriorating ride quality. In order to address this issue, this paper conducts a detailed investigation into the coupling effect between suspension modes and hunting modes of metro vehicles. Initially, a simplified lateral dynamics model is established, and a continuous modal tracking method is adopted for track suspension modes and hunting modes. The results indicate that when the modal frequency of one hunting mode approaches that of corresponding suspension mode, the damping ratio of the two modes exhibits abnormal variation, and the modal frequency curve veers or is slightly disturbed. In exploring the coupling characteristics of hunting modes and suspension modes, revealing the variation trends and similarity of modal shapes, polar diagrams of modal shapes are presented, and the correlation distance is calculated. Equivalent conicity exerts a substantial influence on the effect of modal coupling, influencing minimum damping ratio and modal shape similarity within the modal coupling zone. To ensure sufficient stability margin for metro vehicles, it is necessary to avoid excessively low equivalent conicity. Finally, the phenomenon of vibration response deterioration within the modal coupling zone is confirmed through both a simplified model and a full DOF model.
Funder
National Natural Science Foundation of China
Systematic Major Project of China State Railway Group Co., Ltd.
Sichuan Science and Technology Plan Project
Independent R&D Project of the State Key Laboratory of Rail Transit Vehicle System