Modal coupling characteristics of primary hunting in metro vehicles: Carbody suspension modes and hunting modes

Author:

Chen Longfei1ORCID,Wang Yong1ORCID,Shi Huailong1ORCID

Affiliation:

1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu, China

Abstract

Due to coupling with carbody suspension modes in railway vehicles, primary hunting can lead to significant low frequency swaying of the carbody, severely deteriorating ride quality. In order to address this issue, this paper conducts a detailed investigation into the coupling effect between suspension modes and hunting modes of metro vehicles. Initially, a simplified lateral dynamics model is established, and a continuous modal tracking method is adopted for track suspension modes and hunting modes. The results indicate that when the modal frequency of one hunting mode approaches that of corresponding suspension mode, the damping ratio of the two modes exhibits abnormal variation, and the modal frequency curve veers or is slightly disturbed. In exploring the coupling characteristics of hunting modes and suspension modes, revealing the variation trends and similarity of modal shapes, polar diagrams of modal shapes are presented, and the correlation distance is calculated. Equivalent conicity exerts a substantial influence on the effect of modal coupling, influencing minimum damping ratio and modal shape similarity within the modal coupling zone. To ensure sufficient stability margin for metro vehicles, it is necessary to avoid excessively low equivalent conicity. Finally, the phenomenon of vibration response deterioration within the modal coupling zone is confirmed through both a simplified model and a full DOF model.

Funder

National Natural Science Foundation of China

Systematic Major Project of China State Railway Group Co., Ltd.

Sichuan Science and Technology Plan Project

Independent R&D Project of the State Key Laboratory of Rail Transit Vehicle System

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3