Rubber Stiffness Optimization for Floor Vibration Attenuation of a Light Bus Based on Matrix Inversion TPA

Author:

Shi Hui1ORCID,Shi Wenku1,Yang Changhai1,Liu Guozheng2,Fan Zhaomeng3,Chen Zhiyong1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University, Changchun 130022, China

2. SAIC Volkswagen Automotive Co., Ltd., Shanghai 201805, China

3. United Automotive Electronic Systems Co., Ltd, Shanghai 310000, China

Abstract

The NVH characteristics of light buses are a very important performance for market competitiveness. To solve the serious floor vibration of a light bus at speed of 60 km/h and 90 km/h, we first derive the matrix inversion TPA (MITPA) method, and then transfer path contribution is analyzed by applying matrix inversion TPA with TPA model establishment, operational vibration test, and FRF measurement. Next, the energy decoupling rate of the powertrain mount system (PMS) is optimized by rubber stiffness optimization based on the path contribution analysis taking both amplitude and phase into consideration. The optimized natural frequencies and energy decoupling rate indicate that energy decoupling rate (EDR) of each DoF of the powertrain mount system is improved. Finally, to verify the optimization effect, this paper implements an operational vibration test with optimized mount installed. The results indicate that floor vibration of postoptimization is improved significantly compared with that of preoptimization. This paper offers a method for engineers to improve vibration problem of vehicle by combining experimental TPA for identification of dominant paths with optimization procedure.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3