An improved fault diagnosis method for rolling bearings based on wavelet packet decomposition and network parameter optimization

Author:

Zhao Fangyuan,Jiang Yulian,Cheng Chao,Wang ShenquanORCID

Abstract

Abstract The diagnosis of faults in rolling bearings plays a critical role in monitoring the condition and maintaining the performance of rotating machinery, while also preventing major accidents. In this article, a new approach to diagnosing faults in rolling bearings is proposed, using wavelet packet decomposition (WPD) for features extraction and the chaotic sparrow search optimization algorithms (CSSOAs) to optimize the parameters of a deep belief network (DBN). Firstly, the WPD method is used for the decomposition of vibration signals in rolling bearings, which are decomposed into three layers, and reconstruction is performed on the nodes of the last layer based on the decomposition. Furthermore, the energy characteristics of the reconstructed nodes are then utilized as inputs to DBN, and the CSSOA is employed to optimize the hyperparameters of DBN. Ultimately, a fault diagnosis model combining WPD with optimizing parameters is presented. This model is validated on bearing datasets from Case Western Reserve University (CWRU) and Jiangnan University (JNU). Experimental results indicate that the average accuracy achieved when modeling with WPD-CSSOA-DBN on the CWRU dataset is 98.24 % , with a root mean square error of 0.0713. On the JNU bearing dataset, the modeling achieves an average accuracy of 95.15 % with a root mean square error of 0.1018. Compared to other methods, this approach demonstrates stronger feature extraction capabilities and outstanding rolling bearing fault diagnosis abilities.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3