CNN-ELMNet: fault diagnosis of induction motor bearing based on cross-modal vector fusion

Author:

Yi Lingzhi,Huang Yi,Zhan JunORCID,Wang YahuiORCID,Sun Tao,Long Jiao,Liu Jiangyong,Chen Biao

Abstract

Abstract As the primary driving equipment in industrial, accurate fault diagnosis and condition monitoring of induction motor is crucial for ensuring operational safety. This paper focuses on the bearing faults of induction motors, which have a substantial impact on both the mechanical and electromagnetic systems of the motors. However, in diagnostic tasks, we are faced with the challenges of multi-source, multi-modal data, significant influence from environmental noise, and minimal differentiation between fault data. This paper proposed a novel cross-modal vector fusion fault diagnosis and classification model (CNN-ELMNet), which includes a cross-modal vector fusion network (VF) based on D-S evidence theory, feature extraction layer (FE) and classification layer (CL). Specifically, the VF prioritizes the integration of diagnostic results from individual vibration signals or stator current signals within convolutional neural networks with the features of the input implicit vectors as decision-making evidence, followed by weighted vector fusion through D-S evidence theory at the decision level. The FE focuses on retaining the convolutional, pooling, and fully connected layers of the convolutional network and freezing the final fully connected layer, thus preserving training parameters and fully utilizing the network’s powerful FE capabilities. The CL includes an Extreme Learning Machine optimized for random hyperparameters using the snow ablation optimizer (SAO) algorithm, which offers rapid convergence and high classification recognition rates. The CNN-ELMNet model combines a convolutional network with an extreme learning machine optimized by the SAO algorithm, which not only preserves the model’s FE capability but also enhances the convergence speed and classification recognition rate of the model. Experimental results on real datasets demonstrate that the proposed model exhibits strong stability, generalization, and high accuracy in fault diagnosis, achieving accuracy rate of 99.29% and 98.75%. This provides a more feasible solution for the bearing fault diagnosis of induction motors and holds promising prospects for practical applications.

Funder

Hunan province Natural science Zhuzhou United foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3