TET3 Mediates 5hmC Level and Promotes Tumorigenesis by Activating AMPK Pathway in Papillary Thyroid Cancer

Author:

Chi Jiadong1,Zhang Wei123,Li Yigong1,Zhao Jie4,Zheng Xiangqian1ORCID,Gao Ming13ORCID

Affiliation:

1. Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China

2. School of Medicine, Nankai University, Tianjin 300071, China

3. Department of Breast and Thyroid Surgery, Tianjin Union Medical Center, No. 190 Jieyuan Road, Hongqiao District, Tianjin 300121, China

4. Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin 300211, China

Abstract

Thyroid cancer is the most common endocrine malignant tumor. The accurate risk stratification and prognosis assessment is particularly important for patients with thyroid cancer, which can reduce the tumor recurrence rate, morbidity, and mortality effectively. DNA methylation is one of the most widely studied epigenetic modifications. Many studies have shown that 5hmC-mediated demethylation played an important role in tumors. The hydroxylation of 5mC is catalyzed by ten-eleven translocation dioxygenase (TET). In this study, we first found that the abnormal expression of 5hmC was closely related to microcarcinoma, multifocal, extraglandular invasion and lymph node metastasis of thyroid carcinoma. Then, we identified TET3 was differentially expressed in thyroid cancers and normal tissues from the TET family. TET3 can promote the proliferation, migration, and invasion of thyroid cancer. TET3-mediated 5hmC can regulate the transcription of AMPK pathway-related genes to activate the AMPK pathway and autophagy and therefore promote PTC proliferation. These findings provide a preclinical rationale for the design of novel therapeutic strategies for this target to improve the clinical outcome of patients with PTC.

Funder

Natural Science Foundation of Tianjin Education Bureau

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3