The novel oncogenic factor TET3 combines with AHR to promote thyroid cancer lymphangiogenesis via the HIF-1α/VEGF signaling pathway

Author:

Yang Liyun,Zhao Runyu,Qiao Peipei,Cui Jiaxin,Chen Xiaoping,Fan Jinping,Hu An,Huang Shuixian

Abstract

Abstract Background Lymphangiogenesis has been reported to play crucial roles in the metastasis of thyroid cancer (THCA), but despite the significant research on lymphangiogenesis in THCA, the precise regulatory mechanism remains unclear. Methods Public databases including the Cancer Genome Atlas (TCGA), TIMER, and UALCAN were used to analyze and visualize the expression of TET3 and AHR in THCA, and the correlation between these molecules were used by TIMER. Additionally, RT-PCR and Western Blot were performed to determine the mRNA and protein expression of related proteins. Plate colony formation, wound healing, cell cycle, apoptosis, angiogenesis and transwell assay were used to examine the ability of proliferation, movement, lymphangiogenesis, migration and invasion of THCA cells. Results Analysis of the TCGA database revealed higher expression levels of TET3 and AHR in tumor tissue compared to normal tissue in THCA. Additionally, a strong correlation was observed between TET3 and AHR. UALCAN database demonstrated that high expression of TET3 and AHR was associated with advanced THCA TNM stages in THCA patients. Furthermore, TET3 activation accelerated THCA cell proliferation by inducing G2/M phase arrest and suppressing apoptosis, while AHR inactivation reduced THCA cell proliferation by decreasing G2/M phase arrest and promoting apoptosis in vitro. Notably, both TET3 and AHR significantly enhanced THCA cell lymphangiogenesis, migration and invasion. Moreover, TET3 activation and AHR inactivation regulated HIF-1α/VEGF signaling pathway, which ultimately, blocked the HIF-1α/VEGF in THCA cells and impaired their movement, migration and invasion abilities. Conclusions The combined action of TET3 and AHR to promote lymphangiogenesis in THCA through the HIF-1α/VEGF signaling pathway, and targeting them might provide a potential treatment strategy for THCA.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3