Affiliation:
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education, Wuhan 430100, China
2. Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
Abstract
Compressional and shear wave velocities (Vp and Vs, respectively) are important elastic parameters to predict reservoir parameters, such as lithology and hydrocarbons. Due to acquisition technologies and economy, the shear wave velocity is generally lacking. Over the last few years, some researchers proposed deep learning algorithms to predict the shear wave velocity using conventional logging data. However, these algorithms focus either on spatial feature extraction for different physical properties of rocks or on sequential feature extraction in the depth direction of rocks. Only focusing on feature extraction in a direction of rocks might lead to a decrease in prediction accuracy. Therefore, we propose a hybrid network of a two-dimensional convolutional neural network and the gated recurrent unit (2DCNN-GRU), which can establish more complex nonlinear relationships between the input and output data based on the spatial features extracted by 2DCNN and the sequential features extracted by GRU. In this study, two cases are used to validate the reliability and prediction accuracy of the proposed network. Comparing the prediction results of 2DCNN, GRU, and the proposed network, the proposed network shows better performance. Meanwhile, for improving the prediction accuracy of the proposed network, the relationship is analyzed between the prediction accuracy of the proposed network and the length of the input sample.
Funder
China National Petroleum Corporation
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献