Advanced integration of 2DCNN-GRU model for accurate identification of shockable life-threatening cardiac arrhythmias: a deep learning approach

Author:

Ba Mahel Abduljabbar S.,Cao Shenghong,Zhang Kaixuan,Chelloug Samia Allaoua,Alnashwan Rana,Muthanna Mohammed Saleh Ali

Abstract

Cardiovascular diseases remain one of the main threats to human health, significantly affecting the quality and life expectancy. Effective and prompt recognition of these diseases is crucial. This research aims to develop an effective novel hybrid method for automatically detecting dangerous arrhythmias based on cardiac patients’ short electrocardiogram (ECG) fragments. This study suggests using a continuous wavelet transform (CWT) to convert ECG signals into images (scalograms) and examining the task of categorizing short 2-s segments of ECG signals into four groups of dangerous arrhythmias that are shockable, including ventricular flutter (C1), ventricular fibrillation (C2), ventricular tachycardia torsade de pointes (C3), and high-rate ventricular tachycardia (C4). We propose developing a novel hybrid neural network with a deep learning architecture to classify dangerous arrhythmias. This work utilizes actual electrocardiogram (ECG) data obtained from the PhysioNet database, alongside artificially generated ECG data produced by the Synthetic Minority Over-sampling Technique (SMOTE) approach, to address the issue of imbalanced class distribution for obtaining an accuracy-trained model. Experimental results demonstrate that the proposed approach achieves high accuracy, sensitivity, specificity, precision, and an F1-score of 97.75%, 97.75%, 99.25%, 97.75%, and 97.75%, respectively, in classifying all the four shockable classes of arrhythmias and are superior to traditional methods. Our work possesses significant clinical value in real-life scenarios since it has the potential to significantly enhance the diagnosis and treatment of life-threatening arrhythmias in individuals with cardiac disease. Furthermore, our model also has demonstrated adaptability and generality for two other datasets.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3