Shear wave velocity prediction for fractured limestone reservoirs based on artificial neural network

Author:

Feng Gang1ORCID,Yang Zhe1,Xu Xing‐Rong1,Yang Wei1,Zeng Hua‐Hui1

Affiliation:

1. Research Institute of Petroleum Exploration and Development‐Northwest (NWGI), PetroChina Lanzhou China

Abstract

AbstractShear wave velocity is an essential parameter in reservoir characterization and evaluation, fluid identification and prestack inversion. However, conventional data‐driven or model‐driven shear wave velocity prediction methods exhibit several limitations, such as lack of training data sets, poor model generalization and weak model robustness. In this study, a model‐ and data‐driven approach is presented to facilitate the solution of these problems. We develop a theoretical rock physics model for fractured limestone reservoirs and then use the model to generate synthetic data that incorporates geological and geophysical knowledge. The synthetic data with random noise is utilized as the training data set for the artificial neural network, and a well‐trained shear wave velocity prediction model, random noise shear wave velocity prediction neural network, is established by parameter tuning, which fits the synthetic data with noise well. The neural network is applied directly to the real field area. Compared with conventional shear wave prediction methods, such as empirical formulas and the improved Xu–White model, the prediction results show that the random noise shear wave velocity prediction neural network has better prediction performance and generalization. Furthermore, the prediction results demonstrate the efficacy of the proposed approach, and the approach has the potential to perform shear wave velocity prediction in real areas where training data sets are unavailable.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3