Shear wave velocity prediction based on 1DCNN-BiLSTM network with attention mechanism

Author:

Feng Gang,Liu Wen-Qing,Yang Zhe,Yang Wei

Abstract

The Shear wave (S-wave) velocity is an essential parameter in reservoir characterization and evaluation, fluid identification, and prestack inversion. However, the cost of obtaining S-wave velocities directly from dipole acoustic logging is relatively high. At the same time, conventional data-driven S-wave velocity prediction methods exhibit several limitations, such as poor accuracy and generalization of empirical formulas, inadequate exploration of logging curve patterns of traditional fully connected neural networks, and gradient explosion and gradient vanishing problems of recurrent neural networks (RNNs). In this study, we present a reliable and low-cost deep learning (DL) approach for S-wave velocity prediction from real logging data to facilitate the solution of these problems. We designed a new network sensitive to depth sequence logging data using conventional neural networks. The new network is composed of one-dimensional (1D) convolutional, bidirectional long short-term memory (BiLSTM), attention, and fully connected layers. First, the network extracts the local features of the logging curves using a 1D convolutional layer, and then extracts the long-term sequence features of the logging curves using the BiLSTM layer, while adding an attention layer behind the BiLSTM network to further highlight the features that are more significant for S-wave velocity prediction and minimize the influence of other features to improve the accuracy of S-wave velocity prediction. Afterward, the nonlinear mapping relationship between logging data and S-wave velocity is established using several fully connected layers. We applied the new network to real field data and compared its performance with three traditional methods, including a long short-term memory (LSTM) network, a back-propagation neural network (BPNN), and an empirical formula. The performance of the four methods was quantified in terms of their coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). The new network exhibited better performance and generalization ability, with R2 greater than 0.95 (0.9546, 0.9752, and 0.9680, respectively), RMSE less than 57 m/s (56.29, 23.18, and 30.17 m/s, respectively), and MAE less than 35 m/s (34.68, 16.49, and 21.47 m/s, respectively) for the three wells. The test results demonstrate the efficacy of the proposed approach, which has the potential to be widely applied in real areas where S-wave velocity logging data are not available. Furthermore, the findings of this study can help for a better understanding of the superiority of deep learning schemes and attention mechanisms for logging parameter prediction.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3