Compound Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by MCDK

Author:

Wan Shuting1,Zhang Xiong1ORCID,Dou Longjiang1ORCID

Affiliation:

1. Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China

Abstract

The fast spectrum kurtosis (FSK) algorithm can adaptively identify and select the resonant frequency band and extract the fault feature by the envelope demodulation method. However, in practical applications, the fault source may be located in different resonant frequency bands; plus in noise interference, the weak side of the compound fault is not easy to be identified by the FSK. In order to improve the accuracy of fast spectral kurtosis analysis method, a modified method based on maximum correlation kurtosis deconvolution (MCKD) is proposed. According to the possible fault characteristic frequencies, the period of MCKD is calculated, and the appropriate filter length is selected to filter the original compound fault signal. In this way, the compound fault located in different resonance bands is separated. Then, the signal after MCKD filtering is analyzed by FSK. Through the simulation and experimental analysis, the MCKD can separate the compound fault information in different frequency band and eliminate the noise interference; the FSK can accurately identify the resonance frequency and identify the weak fault characteristics of compound fault.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3