Abstract
Fault diagnosis of rotating machines is an important task to prevent machinery downtime, and provide verifiable support for condition-based maintenance (CBM) decision-making. Deep learning-enabled fault diagnosis operations have become increasingly popular because features are extracted and selected automatically. However, it is challenging for these models to give superior results with rotating machine components of different scales, single and multiple faults across different rotating components, diverse operating speeds, and diverse load conditions. To address these challenges, this paper proposes a comprehensive learning approach with optimized signal processing transforms for single as well as multiple faults diagnosis across dissimilar rotating machine components: gearbox, bearing, and shaft. The optimized bicoherence, spectral kurtosis and cyclic spectral coherence feature spaces, and deep blending ensemble learning are explored for multiple faults diagnosis of these components. The performance analysis of the proposed approach has been demonstrated through a single joint training of the entire framework on a compound dataset containing multiple faults derived from three public repositories. A comparison with the state-of-the-art approaches that used these datasets, shows that our method gives improved results with different components and faults with nominal retraining.
Funder
Petroleum Technology Development Fund
Nigeria
Integrated Vehicle Health Management Centre, Cranfield University
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献