PT-Informer: A Deep Learning Framework for Nuclear Steam Turbine Fault Diagnosis and Prediction

Author:

Zhou Jiajing12,An Zhao2,Yang Zhile23,Zhang Yanhui23,Chen Huanlin1,Chen Weihua1,Luo Yalin1,Guo Yuanjun23ORCID

Affiliation:

1. State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, Shenzhen 518172, China

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

3. Guangdong Institute of Carbon Neutrality (Shaoguan), Shaoguan 512029, China

Abstract

The health status of equipment is of paramount importance during the operation of nuclear power plants. The occurrence of faults not only leads to significant economic losses but also poses risks of casualties and even major accidents, with unimaginable consequences. This paper proposed a deep learning framework called PT-Informer for fault prediction, detection, and localization in order to address the challenges of online monitoring of the operating health of nuclear steam turbines. Unlike traditional approaches that involve separate design and execution of feature extraction for fault diagnosis, classification, and prediction, PT-Informer aims to extract fault features from the raw vibration signal and perform ultra-real-time fault prediction prior to their occurrence. Specifically, the encoding and decoding structure in PT-Informer ensures the capture of temporal dependencies between input features, enabling accurate time series prediction. Subsequently, the predicted data are utilized for fault detection using PCA in the PT-Informer framework, aiming to assess the likelihood of equipment failure in the near future. In the event of potential future failures, t-SNE is utilized to project high-dimensional data into a lower-dimensional space, facilitating the identification of clusters or groups associated with different fault types or operational conditions, thereby achieving precise fault localization. Experimental results on a nuclear steam turbine rotor demonstrate that PT-Informer outperformed the traditional GRU with a 4.94% improvement in R2 performance for prediction. Furthermore, compared to the conventional model, the proposed PT-Informer enhanced the fault classification accuracy of the nuclear steam turbine rotor from 97.4% to 99.6%. Various comparative experiments provide strong evidence for the effectiveness of PT-Informer framework in the diagnosis and prediction of nuclear steam turbine.

Funder

State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment

China NSFC

Shenzhen Science Fund for Excellent Young Scholars

outstanding young researcher innovation fund of SIAT, CAS

The Science and Technology project of Tianjin, China

“Nanling Team Project” of Shaoguan city

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3